Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090365

ABSTRACT

The SARS-CoV-2 virus is responsible for the rapid global spread of the COVID-19 disease. As a result, it is critical to understand and collect primary data on the virus, infection epidemiology, and treatment. Despite the speed with which the virus was detected, studies of its cell biology and architecture at the ultrastructural level are still in their infancy. Therefore, we investigated and analyzed the viral morphometry of SARS-CoV-2 to extract important key points of the virus's characteristics. Then, we proposed a prediction model to identify the real virus levels based on the optimization of a full recurrent neural network (RNN) using transmission electron microscopy (TEM) images. Consequently, identification of virus levels depends on the size of the morphometry of the area (width, height, circularity, roundness, aspect ratio, and solidity). The results of our model were an error score of training network performance 3.216 × 10-11 at 639 epoch, regression of -1.6 × 10-9, momentum gain (Mu) 1 × 10-9, and gradient value of 9.6852 × 10-8, which represent a network with a high ability to predict virus levels. The fully automated system enables virologists to take a high-accuracy approach to virus diagnosis, prevention of mutations, and life cycle and improvement of diagnostic reagents and drugs, adding a point of view to the advancement of medical virology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neural Networks, Computer , Microscopy, Electron, Transmission
2.
Appl Microbiol Biotechnol ; 106(9-10): 3321-3336, 2022 May.
Article in English | MEDLINE | ID: covidwho-1813656

ABSTRACT

The COVID-19, MERS-CoV, and SARS-CoV are hazardous epidemics that have resulted in many deaths which caused a worldwide debate. Despite control efforts, SARS-CoV-2 continues to spread, and the fast spread of this highly infectious illness has posed a grave threat to global health. The effect of the SARS-CoV-2 mutation, on the other hand, has been characterized by worrying variations that modify viral characteristics in response to the changing resistance profile of the human population. The repeated transmission of virus mutation indicates that epidemics are likely to occur. Therefore, an early identification system of ongoing mutations of SARS-CoV-2 will provide essential insights for planning and avoiding future outbreaks. This article discussed the following highlights: First, comparing the omicron mutation with other variants; second, analysis and evaluation of the spread rate of the SARS-CoV 2 variations in the countries; third, identification of mutation areas in spike protein; and fourth, it discussed the photonics approaches enabled with artificial intelligence. Therefore, our goal is to identify the SARS-CoV 2 virus directly without the need for sample preparation or molecular amplification procedures. Furthermore, by connecting through the optical network, the COVID-19 test becomes a component of the Internet of healthcare things to improve precision, service efficiency, and flexibility and provide greater availability for the evaluation of the general population. KEY POINTS: • A proposed framework of photonics based on AI for identifying and sorting SARS-CoV 2 mutations. • Comparative scatter rates Omicron variant and other SARS-CoV 2 variations per country. • Evaluating mutation areas in spike protein and AI enabled by photonic technologies for SARS-CoV 2 virus detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Artificial Intelligence , Humans , Intelligence , Mutation , Optics and Photonics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL